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SUMMARY

An optimal fuzzy �lter was applied to solve the state estimation problem of the controlled irrigation
canals. Using linearized �nite-di�erence model of the open-channel �ow, a canal operation problem
was formulated as an optimal control problem and an algorithm for gate openings in the presence of
unknown external disturbances was derived. A fuzzy �lter was designed to estimate the state variables
at the intermediate nodes based upon measured values of depth at the points in the canal. A Lyapunov
function was utilized as a performance index to formulate the fuzzy interference rules of the optimal
fuzzy �lter. A linear quadratic Gaussian (LQG) optimal controller for a multi-pool irrigation canal
was considered as an example. The state estimation problem in the controller was simulated using two
techniques: Kalman estimator and the proposed fuzzy �lter. The performance of the fuzzy state estimator
designed using the Lyapunov fuzzy technique was compared with the results obtained using the Kalman
estimator technique. The obvious advantages of the fuzzy �lter were the lower computational costs and
ease of implementation. The results of this study demonstrated that proposed Lyapunov-type fuzzy �lter
provides both good stability and simplicity in the control of irrigation canals more than a Kalman �lter.
Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: open-channel �ow; Lyapunov fuzzy �lter; Kalman �lter; canal automation

INTRODUCTION

The goal of modern irrigation system technology is to improve the system’s ability to respond
to user demands. The assumption behind such an e�ort is that water delivery in the amounts,
at times, and at the rates required by users will lead to better water management on-farm.
This calls for a demand delivery of water to the farmers in the command area of an irrigation
project. Demand delivery o�ers the maximum �exibility and convenience to the water user.
Receiving water on demand also has economic value to the water user because delays or
quantity restrictions are not involved. Although a demand delivery schedule o�ers �exibility

∗Correspondence to: �Omer Faruk Durdu, Faculty of Agriculture, Irrigation and Drainage Department, Adnan
Menderes University, 09100 Aydin, Turkey.

†E-mail: odurdu@adu.edu.tr
Received 17 February 2005

Revised 12 July 2005
Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 13 July 2005



492 �O. F. DURDU

from the farmer’s point of view, the system operation becomes di�cult and costly because
of the unknown demands or variations in demands (changes in withdrawals) [1]. To meet
the unknown demands and to achieve a balanced operation in the canal system, a constant
water level control at downstream end of a given pool is employed. In a demand delivery
schedule, under constant-level control, since the demands (disturbances or �ow rate changes)
are not known in advance, the e�ect of the random disturbances on the system variables must
be measured and used in the feedback loop to control the system [1]. The variation in the
depths of �ow is used in the closed loop (feedback loop). During the few decades, several
control algorithms have been developed to derive the relationship between the deviations
in the system variables (�ow depth and �ow rate) and the change in gate opening (gate-
control algorithm). In the past, the concepts of optimal control theory have been applied
for deriving closed-loop-control algorithms for real-time control of irrigation canals [2–7].
However, when lumped parameter models are used to derive control algorithms for irrigation
canals, the number of state variables (�ow depths and �ow rates) that must be used in the
feedback loop is large [8]. Consequently, it is costly to measure �ow depths and �ow rates at
several points in a multi-pool irrigation canal. Therefore, to minimize the cost of implementing
feedback-control algorithms, the number of measurements per pool must be kept to an absolute
minimum. Since one or two �ow depths per pool are normally measured in practice, it is
preferable (and possible) to estimate values for the state variables that are not measured. This
is done by using an observer or estimator. An observer is a mathematical model of the system
that estimates the values for the state variables that are not measured based upon the measured
values for one or two more state variables in the pool [1]. The Kalman �ltering technique
is applied to design an observer for a multi-pool irrigation canal [1, 9]. The Kalman �lter is
well known for its use in optimal estimation, and is especially suitable for the system with
disturbances and measurement errors. A signi�cant di�culty in designing Kalman �lters is how
to e�ectively determine the process noise covariance matrix (Qx) and the measurement noise
covariance matrix (R) [10]. These matrices are not usually known precisely, or even in a time
varying manner. Therefore, the use of fuzzy estimator theory to deal with the state estimation
problem has become of interest to overcome the determination of Qx and R matrices [11–15].
Many studies have been carried out into calibrating the covariance matrices Qx and R by
means of fuzzy rules [11]. In general, the design strategies for the fuzzy decision rules are
based on heuristic approaches or on the experiences of human experts. The objective of this
paper is to apply an optimal fuzzy �lter technique in the control of a multi-pool irrigation
canal and to compare the performance of the regulators designed using optimal state feedback
(target-loop function), Kalman �ltering and Lyapunov fuzzy �lter techniques.

BASIC HYDRODYNAMICS OF OPEN-CHANNEL FLOW

The one-dimensional equations (the St Venant equations) for gradually varied, unsteady �ow
in a prismatic channel are

@A
@t
+
@Q
@x
= ql (1)

@Q
@t
+
@(Q2=A)
@x

+ gA
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@y
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− S0 + Sf
)
= 0 (2)
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in which Q is the �ow rate (m3=s), A the wetted area (m2), ql the lateral �ow (m2=s), y the
water depth (m), t the time (s), x the longitudinal direction of channel (m), g the gravitational
acceleration (m2=s), S0 the canal bottom slope (m=m), n the roughness coe�cient (s=m1=3),
and Sf the friction slope (m=m) and is de�ned as

Sf =
Q|Q|
K2

(3)

in which K is the hydraulic conveyance of canal=AR2=3=n, R the hydraulic radius (m). In
Equations (1) and (2), the spatial derivatives were replaced by �nite-di�erence approximations,
by dividing the pool into few segments (N =number of nodes). A central-di�erence scheme
was used for the interior nodes (1¡j¡N ), and a forward di�erence and a backward di�erence
were applied to the �rst and the last nodes, respectively [5]. Both forward and backward
�nite-di�erence approximations (the neglected terms are of the �rst order of �x) are referred
to as �rst-order accurate. Central �nite-di�erence approximation (the neglected terms is of
the order of (�x)2) is referred to as second-order accurate [16]. The central �nite-di�erence
approximation is more accurate than the forward or backward �nite-di�erence approximations.
The water levels or the volumes of water stored in the canal pools are regulated using a series
of spatially distributed gates (control elements). Hence, open irrigation canals are modelled
as distributed control systems. To solve Equations (1) and (2), the boundary conditions were
expressed in terms of the continuity equation:

Qi−1; N =Qi;1 =Qgi (4)

and gate discharge equation [5]

Qgi=Cdibiui(2g(Zi−1; N − Zi;1))1=2 (5)

in which, Qi−1; N is the �ow rate through downstream gate (or node N) of pool i− 1 (m3=s),
Qgi the �ow rate through upstream gate of pool i (m3=s), Qi;1 the �ow rate through upstream
gate (or node 1) of pool i (m3=s), Cdi the discharge coe�cient of gate i, bi the width of gate
i (m), ui the opening of gate i (m), Zi−1; N the water surface elevation at node N of pool
i− 1 (m), Zi;1 the water surface elevation at node 1 of pool i (m) and i the pool index (i=0
refers to the upstream constant-level reservoir). In the algorithm, the turnouts were assumed
to be scattered throughout the pool length (Figure 1). The withdrawals were related to ql of
Equation (1) as follows [5]:

ql =
∑Oi; j

n=1 qi; n
s

(6)

where s=�x in the case of backward=forward di�erence scheme, and s=2�x in a central-
di�erence scheme; �x is the distance between two nodes (m), qi; n the withdrawal rate from
outlet n of pool i (m3=s) and Oi; j the number of outlets represented around node j of pool i.
Linear optimal control theory is well developed and is easier to apply than nonlinear control
theory [17]. The linearized model was derived based upon the initial steady-state condition.
Equations (1) and (2) describe the conservation of mass and momentum in terms of the
partial derivatives of dependent variables: �ow depth and velocity. For practical applications,
the values of these variables instead of the values of their derivatives must be known. Because
of the presence of nonlinear terms, a closed-form solution of these equations is not available,
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Figure 1. Schematic diagram of a single pool.

except for very simpli�ed cases [18]. The stability of a numerical solution of the equations
can be investigated by studying whether an error grows or decays as the solution progress
in a marching (step-by-step) procedure. Rigorous procedures are not presently available to
determine the stability of nonlinear equations. However, by linearizing the nonlinear terms
of the St Venant equations, stability can be studied. If the nonlinearities are not strong,
then the criteria developed for the linear equations may be assumed to be valid for the
nonlinear equations as well. Although, the employed �nite-di�erence scheme for the solution
of the equations is plausible, at each step of the solution an error is introduced, due to the
approximation of the partial di�erentials by �nite quotients. This error has been labelled the
truncation or discretization error, and depends on the magnitude of the time and space intervals
selected [19]. Although at a given time step the magnitude of the discretization error may
appear small in comparison with the calculated quantities, a practical calculation may involve
thousands of consecutive time steps, so that it is absolutely essential to verify that these
errors remain small in magnitude with respect to the true solution. In order to describe the
behaviour of the numerical solution it is usual to consider the properties of stability, which
must be satis�ed by the numerical solution to be employed in practical computation [19].
Therefore, Equations (1) and (2) were linearized numerically about an average operation
condition. Using the Taylor series around the equilibrium point and truncating terms higher
than the �rst order, the deviation variables were de�ned as follows [5]:

�ui = ui − u0i (7)

�Zi; j = Zi; j − Z0i; j (8)

�qi; n = qi; n − q0i; n (9)

�Qi; j = Qi; j −Q0i; j (10)

in which �Qi; j is the variation in �ow rate at node j of pool i (m3=s), �Zi; j the variation in
water surface elevation at node j of pool i (m), �ui the variation in upstream gate opening of
pool i (m), �qi; n the variation in water withdrawal rate from outlet n of pool i [(m3=s)=m].
The truncation and other errors are introduced at any step in the computations one de�nes
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by stability the property of the numerical solution that these errors remain bounded, that they
do not amplify without limit as the time interval tends to zero. Substitution of Equations
(7)–(10) into Equations (1) and (2) and application of the �nite-di�erence implicit technique
result in a set of linear, ordinary di�erential equations for the canal with control gates and
turnouts [3, 20]

A11�Q+j + A12�z
+
j + A13�Q

+
j+1 + A14�z

+
j+1 = A

′
11�Qj + A

′
12�zj + A

′
13�Qj+1 + A

′
14�zj+1 + C1

(11)

A21�Q+j + A22�z
+
j + A23�Q

+
j+1 + A24�z

+
j+1 = A

′
21�Qj + A

′
22�zj + A

′
23�Qj+1 + A

′
24�zj+1 + C2

(12)

where �Q+j and �z
+
j are the discharge and water-level increments from time level t + 1 at

node j, �Qj and �zj the discharge and water-level increments from time level t at node
j, and A11; A′

21; : : : A12; A22 are the coe�cients of the continuity and momentum equations,
respectively, computed with known values at time level t. Similar equations are derived for
channel segments that contain a gate structure, a weir or some other type of hydraulic structure.
From the above equations, the state of system equation at any sampling interval k can be
written, in a compact form, as follows [10]:

AL�x(k + 1)=AR�x(k) + B�u(k) + C�q(k) (13)

where A is the n× n system feedback matrix, B the l×m control distribution matrix, C the
p× l disturbance matrix, �x(k) the l× 1 state vector, �u(k) the m× 1 control vector, ��q
the variation in demands (or disturbances) at the turnouts (m2=s), l the number of dependent
(state) variables in the system, m the number of controls (gates) in the canal, p the number
of outlets in the canal, and k the time increment (s). The elements of the matrices A; B, and
C depend upon the initial condition [7]. The dimensions of the control distribution matrix, B,
depend on the number of state variables and the number of gates in the canal. The dimensions
of the disturbance matrix, C, depend on the number of disturbances acting on the canal system
and the number of dependent state variables. Equation (13) can be written in a state-variable
form along with the output equations as follows [1]:

�x(k + 1) = ��x(k) + ��u(k) + 	�q(k) (14)

�y(k) = H�x(k) (15)

where �= (AL)−1 ∗ AR, �= (AL)−1 ∗ B, and 	=(AL)−1 ∗ C, �y(k)= r× 1 vector of output
(measured variables), H = r× l output matrix, and r=number of outputs. The elements of the
matrices �;�, and 	 depend upon the canal parameters, the sampling interval, and the assumed
average operating condition of the canal. In Equation (14), the vector of state variables is
de�ned as follows [21]:

�x=(�Qi;1; �Zi;2; �Qi;2; : : : ; �Zi;N−1; �Qi;N−1; �Qi;N ) (16)
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QUADRATIC GAUSSIAN (LQG) REGULATOR

The LQG theory provides an integrated knowledge base for the development of a �exi-
ble controller. The LQG controller integrates the states estimation and the controller design
(Figure 2) into a single body of knowledge (Figure 3). An LQG controller consists of an op-
timal state feedback (LQR) and an optimal state estimator. An optimal LQG controller based
upon a linear system, a quadratic objective function and an assumption of white noise that
has a normal, or Gaussian, probability distribution. In this study, an LQR controller was �rst
designed and simulated based on given example canal. Then a Kalman �lter subroutine was
inserted into the controller algorithm and the algorithm was simulated to observe the e�ects
of the estimated state variables on the performance of the system. Later, the Kalman state
estimator was replaced by a Lyapunov fuzzy estimator subroutine. The control algorithm was
simulated again for the canal to observe the performance of the fuzzy estimator in comparison
to the Kalman �lter.

Design of optimal state feedback

Linear quadratic regulator (LQR) control problem as an optimization problem in which the
cost function, J, to be minimized is given as follows [10]:

J =
K∞∑
i=1
[�xT(k)Qxl×l�x(k) + �uT(k)Rm×m�u(k)] (17)

Figure 2. A multivariable feedback control system scheme.
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Figure 3. Linear quadratic Gaussian (LQG) controller with a state estimator.

subject to the constraint that:

−�x(k + 1) + ��x(k) + ��u(k)=0 k=0; : : : ; K∞ (18)

where K∞ is the number of sampling intervals considered to derive the steady-state controller,
Qxl×l the state cost weighting matrix, and Rm×m the control cost weighting matrix (well-known
steady-state solution of a Riccati equation). The matrices Qx and R are symmetric, and to
satisfy the non-negative de�nite condition, they are usually selected to be diagonal with all
diagonal elements positive or zero. Kailath [22] de�ned that the choice of the elements of
these matrices is more of an art than a science. Flow transition in the canal is de�ned by
specifying a rough estimate of the time, t, and deviations in velocity, �V . As t is increased,
a higher penalty is applied to depth deviations and gate velocities. The e�ect of a larger t
speci�cation will be less abrupt responses to changes in the disturbances [18]. The maximum
deviations in gate openings (�u) are just the di�erence between the initial and �nal steady gate
position. On the diagonal elements of Qx and R are nonzero and their values are determined
from the �ow transition and the corresponding wave equation response [18]. Conditions for
existence and uniqueness of the optimal solution are always met when diagonal penalization
is used. The �rst term, �xT(k)Qxl×l�x(k), in Equation (17) represents the penalty on the
deviation of the state variables from the average operating (or target) condition. The second
term, �uT(k)Rm×m�u(k), called as the cost of control, contains quadratic functions of the
elements of gate deviation matrix (�u). This term is included in an attempt to limit the
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magnitude of the control signal �u(k). Unless a cost is imposed for use of control, the design
that emerges is liable to generate control signals that cannot be achieved by the actuator. In
this case the saturation of the control signal will occur resulting in a system behaviour that is
di�erent from the closed-loop system behaviour that was predicted assuming that saturation
will not occur [7]. Therefore, the control signal weighting matrix elements are selected to
be large enough to avoid saturation of the control signal under normal operating conditions.
Equations (17) and (18) constitute a constrained-minimization problem that can be solved
using the method of Lagrange multipliers [7]. This produces a set of coupled di�erence
equations which must be solved recursively backwards in time. In the optimal steady-state
case, the solution for change in gate opening, �u(k), is of the same form as

�u(k)= − K�x(k) (19)

where K is given by

K =[R+ �TS�]−1�TS� (20)

S is a solution of the discrete algebraic Riccati equation (DARE)

�TS�−�TS�[R+ �TS�]−1�TS�+Qx= S (21)

where R=RT¿0 and Qx=QxT =HTH¿ 0. The control law de�ned by Equation (19) brings
an initially disturbed system to an equilibrium condition in the absence of any external dis-
turbances acting on the system [7]. In the presence of these external disturbances, the system
cannot be returned to the equilibrium condition using the Equation (19). An integral control,
in which the cumulative (or integrated) deviation of a selected output variable is used in the
feedback control loop, is required to return the system to the equilibrium condition in the
presence of external disturbances [17]. Integral control is achieved by appending additional
variables of the following form to the system dynamic equation:

�xI(k + 1)=D�x(k) + �xI(k) (22)

in which �xI is the integral state variables and D the integral feedback matrix. This produces
a new control law [7]:

�u(k)= − K�x(k)− KI�xI(k) (23)

The �rst term in Equation (23) accounts for initial disturbances, whereas the second term
accounts for external disturbances. Equation (23) predicts the desired gate openings as func-
tion of the measured deviations in the values of the state variables [5]. In this paper, the
water surface elevation and �ow rate were considered as state variables. Given initial con-
ditions [�x(0)], �u, and �q, Equation (17) can be solved for variations in �ow depth and
�ow rate as a function of time. If the system is really at equilibrium [i.e. �x(0)=0 at time
t=0] and there is no change in the lateral withdrawal rates (disturbances), the system would
continue to be at equilibrium forever; then, there is no need for any control action. Con-
versely, in the presence of disturbances (known or random), the system would deviate from
the equilibrium condition [4]. The actual condition of the system may be either above or
below the equilibrium condition, depending upon the sign and magnitude of the disturbances.
If the system deviates signi�cantly from the equilibrium condition, the discharge rates into the
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laterals will be di�erent (either more or less) than the desired values. But in canal operations,
the main objective is to keep these deviations to a minimum so that a nearly constant rate of
discharge is maintained through the turnouts.

Design of Kalman �lter

The LQG theory provides an integrated knowledge base for the development of a �exible
controller. Since it is expensive to measure all the state variables (�ow rates and �ow depths)
in a canal system, the number of measurements per pool must be kept to an absolute minimum.
Usually, the �ow depths at the upstream and downstream ends of each pool are measured.
The relationship between the state variables and the measured (or output) variables is [7]

�y(k)=H�x(k) + �(k) (24)

where �(k) is the measurement error inputs. For steady-state Kalman �lter, the observer gain
matrix, L, is calculated as follows:

L=PHT[HPHT + RC]−1 (25)

where P is the covariance of estimation uncertainty:

�TP�−�PHT[RC +HTPH ]−1HP�T +Qesti (26)

where RC=RCT¿0 is a tolerance values for the RC covariance matrix which is an iden-
tity matrix and Qesti =QTesti¿ 0 is a diagonal matrix. The disturbances �q(k) and �(k), in
Equations (14) and (24), are assumed to be zero mean Gaussian white noise sequences
with symmetric positive de�nite covariance matrices Qesti and RC, respectively. Furthermore,
sequences �q(k) and �(k) are assumed to be statistically independent. The system dynamic
equation is used to predict the state and estimation error covariance as follows. Time-update
equations [23]:

P−(k + 1) = �P(k)�T + 	Qesti	T (27)

�x̂−(k + 1) = ��x̂(k) + ��u(k) (28)

in which �x̂(k) is the estimated values of the state variables. As soon as measured values
for the output variables �y(k) are available, the time-update values are corrected using the
measurement-update equations as follows. Measurement-update equations [23]:

L(k + 1) = P−(k + 1)HT[HP−(k + 1)HT + RC]−1 (29)

P(k + 1) = [I − L(k + 1)H ]P−(k + 1) (30)

�x̂(k + 1) = �x̂−(k + 1) + L(k + 1)[�y(k + 1)−H�x̂−(k + 1)] (31)

If the initial conditions and the inputs (control inputs and the disturbances) are known without
error, the system dynamic equation, Equation (2), can be used to estimate the state variables
that are not measured [24]. Since part of the disturbances are random and usually are not
measured, the canal parameters are not known very accurately, the estimated values of the
state variables would diverge from the actual values. This divergence can be minimized by
utilizing the di�erence between measured output and the estimated output (error signal), and
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by constantly correcting the system model with the error signal [1]. Therefore, the modi�ed
state equations are given as

�x̂(k + 1)=��x̂(k) + ��u(k) + L[�y(k) +H�x̂(k)] (32)

Design of Lyapunov-type fuzzy �lter

Designing an estimator for the multi-pool irrigation system is assuming a known control input
(variations in gate opening), �u(k), a measured output, �y(k), measurement error noise, �(k),
and disturbance noise, �q(k). The estimator is designed to provide an optimal estimate of the
state vector, �x(k). Combination of the optimal state feedback and state estimator generates
the input vector, �u(k), based upon the estimated state vector, �x̂(k), rather than the actual
state vector, �x(k), and the measured output vector, �y(k). The application of fuzzy theory to
the state estimation problem is a rising topic [11]. The Lyapunov theorem is one of the most
useful methods when one deals with stability problem for the conventional control systems.
And it is quite simple and easy to be implemented. It simply depends upon setting up a
positive de�nite function V (k) and then verifying V (k)’s derivative, 
V (k), is negative. In this
study, the Lyapunov function and the derived sensitivity function were used as performance
indices to organize the fuzzy interference rules. The Lyapunov-function-based fuzzy �lter for
the linear systems is organized as follows [25]:

�x̂LF(k=k − 1) = ��x̂(k − 1=k − 1) + ��u(k − 1) (33)

�x̂LF(k=k) = �x̂LF(k=k − 1) + L(k)[�y(k)−H�x̂LF(k=k − 1)] (34)

where �x̂LF(k=k − 1) and �x̂LF(k=k) are the predicted state and the updated state, respectively,
and L(k) is the fuzzy correction gain matrix that is designed not only to guarantee convergence
but also to make the estimated state �x̂LF(k=k) approach the true state �x(k) as soon as
possible [11]. Consider the Lyapunov function

V (k)= e(k)T · e(k) (35)

where e(k)=H [�x(k)− �x̂LF(k=k)] is the state estimation error vector. The main objective for
the proposed fuzzy �lter is to determine L(k) such that the Lyapunov di�erence is guaranteed
to be negative, i.e. �V (k)=V (k)−V (k−1)¡0. Let the sensitivity function, S(k), be de�ned
as [25]

S(k)=
@V (k)
@L(k)

∼= V (k)− V (k − 1)
L(k)− L(k − 1) =

�V (k)
�L(k)

(36)

and

�V (k) =
m∑
i

n∑
j
�Vi(k) ∼=

m∑
i

n∑
j

@Vi
@Lij

�Lij=
m∑
i

n∑
j

Vi(k)− Vj(k − 1)
Lij(k + 1)− Lij(k − 1)�Lij

=
m∑
i

n∑
j

�Vi(k)
�Lij(k)

�Lij=
m∑
i

n∑
j
Sij�Lij (37)
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where Lij is the ijth entry of the fuzzy gain matrix L and �Lij is the degree of variation to
be determined. As seen above equations, the fuzzy control scheme is to generate a correct
�Lij such that (@V=@Lij). �Lij¡0, i.e. the �V (k) will always be negative [11]. The actual
ijth element of the fuzzy gain matrix is calculated by

Lij(k + 1)=Lij(k) +�Lij(k + 1) (38)

In Equation (38), V (k) represents the distance between the estimated state and the actual state.
The goal of estimation is to decrease the distance as quickly as possible. Therefore, V (k) is
considered as an exponential decaying function. To obtain better performance, the hierarchical
construction will be exploited. The desired exponential decaying response is divided into three
fuzzy subsets: large, medium and small [25]. Next, the sign of �V (k) indicates whether the
state is now diverging from and converging to the actual state �x(k). A stronger control action
must be taken to drive the divergent states back, and only a medium control command should
be required to maintain the movement of the estimated states towards the actual states [11].
When V (k) is small and �V (k) is negative, a smaller control amount is su�cient for obtaining
an estimation. In this study the fuzzy rules for the fuzzy �lter are expressed as

If �V (k) is positive and medium and S(k) is negative and large, then
�L(k + 1) is positive and small.

If �V (k) is positive and zero and S(k) is negative and medium, then
�L(k + 1) is positive and zero.

If �V (k) is negative and large and S(k) is positive and large, then
�L(k + 1) is negative and zero.

If �V (k) is negative and small and S(k) is positive and zero, then
�L(k + 1) is negative and medium.

From above fuzzy rules, it is obvious that the sign of �Lij is determined by Sij, i.e. opposite
to Sij. �Vi(k) is used to determine the amount of �Lij. Once the equations of the optimal
state feedback and the fuzzy observer are obtained, and measured values for one or more state
variables for each pool are available, the dynamics of the linear system can be simulated for
any arbitrarily selected values of external disturbances. In this study, a multi-pool irrigation
canal was considered. The algorithm predicts the �ow rate, Q(x; t) and the depth of �ow,
y(x; t), given the initial boundary conditions [26]. The optimal state feedback and the fuzzy
estimator equations were added as subroutines to this program. Given the initial �ow rate and
the target depth at the downstream end of the each pool, the algorithm computed the backwater
curve. Later on, the downstream �ow requirement and the withdrawal rate into the lateral were
provided as a boundary condition. The model predicted the depths and �ow rates at the nodal
points for the next time increment. The computed depths at the upstream and downstream ends
of the each pool were used with the fuzzy observer under fuzzy rules constraints to estimate
the �ow depths and �ow rates at some selected intermediate nodal points. These estimated
values were then used in the optimal state feedback subroutine to compute the change in the
upstream gate opening in order to bring the depth at the downstream end of the pool close
to the target depth. When the estimated values of the state variables are used in the feedback
loop, the controller equation, Equation (19) becomes [7]

�u(k)= − K�x̂(k)− Kl�xl(k) (39)
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Equation (39) computes the desired change in gate opening as a function of the estimated
(instead of measured) deviations in the state variables. Based upon this gate opening, the
new �ow rate into the pool at the upstream end was calculated and used as the boundary
condition at the upstream end of the each pool [5]. This process was repeated during the
entire simulation period.

RESULTS AND ANALYSIS

To demonstrate the e�ectiveness and stability of the Lyapunov-type fuzzy estimator, an LQG
regulation problem for a discrete-time multi-pool irrigation canal had been simulated. The
data used were as follows: length of canal reach=54 000m, number of nodes=49, num-
ber of subreaches used =6, �x=1500m, channel slope=0:0002, side slope=1:0, bottom
width =5m, disturbance along the simulation=2:5m3=s, discharge required at the end of the
canal=5m3=s, target depth at downstream end=1:5m, gate width =5m, and gate discharge
coe�cient =0:8. These data were �rst used to calculate the steady-state values, which in turn
were used to compute the initial gate openings and the elements of the �;�; H matrices using
sampling interval of 30 s. The values of the initial gate openings for gates 1; 2; 3; 4; 5; 6, and
7 were 1:133; 1:369; 1:168; 0:978; 0:858; 0:636 and 0.7m, respectively. After computing steady-
state values, the control algorithm formulates an LQG controller with a Kalman �lter and a
fuzzy estimator, respectively. As a �rst part of the LQG controller, an optimal state feedback
controller (assumed all states variables are available) was designed to regulate the six-pool
canal system using a constant-level-control approach. The system response was simulated
using the controller in the feedback loop. In the derivation of the feedback gain matrix K, the
control cost weighting matrix, R, of dimensions 6, was set equal to 100, whereas the state
cost weighting matrix, Qx, was set equal to an identity matrix of dimensions 85. The matrix
dimension 85 came from the system dimension. Since the irrigation canal was divided into 49
nodes and each node had a set of two equations, in other words, the dimension of the system
should have been equal to 98. But the system had 7 gates and 6 turnouts; therefore, the sys-
tem matrix dimensions were 85. The cost weighting matrix and the control cost matrix must
be symmetric and positive de�nite (i.e. all eigenvalues of R and Qx must be positive real
numbers). A priori, we do not quite know what values of Qx and R will produce the desired
e�ect. In the absence of a well-de�ned procedure for selecting the elements of these matri-
ces, these values are selected based upon trial and error. At �rst, both Qx and R as identity
matrices were selected. By doing so, it was speci�ed that all state variables and control inputs
were equally important in the objective function, i.e. it was equally important to bring all the
deviations in the state variables (water surface elevations and �ow rate) and the deviations
in the control inputs to zero while minimizing their overshoots. Note that the existence of a
unique, positive de�nite solution to the algebraic Riccati equation (Equation (21)) is guaran-
teed if Qx and R are positive semi-de�nite and positive de�nite, respectively, and the system
is controllable. The analysis started by evaluating the system stability. All the eigenvalues of
the system characteristic equation were positive and had values less than one. A good control
requires the ability to change the behaviour (controllability) of the system. Controllability is
an inherent structural property of a system. The knowledge of controllability is crucial to the
subsequent state-variable feedback. Without controllability, not all of the states can be steered
in the desired direction by input manipulation. A dynamic system is controllable if a control
�u(t) exists such that any �nal state can be attained [4]. The controllability matrix was cal-
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culated and the system was found to be controllable. After de�ning Qx and R matrices, the
optimal feedback gain matrix, K, was calculated.
Since measurement of all the state variables was expensive, the control algorithm �rst

estimated state variables using a Kalman �lter. Next, a fuzzy estimator was employed to
estimate the values for the state variables in the algorithm. Kalman �lter for the system
used the control input �u(k), generated by the optimal state feedback, measured water depths
�y(k) for each pool, the disturbances noise �q(k), and measurement noise, �(k). In the design
of the Kalman �lter, in lieu of actual �eld data on withdrawal rates from the turnouts, the
random disturbances were assumed to have some prespeci�ed levels of variance. The actual
time series of the demands was not used in the design of the �lter; only the variance of the
time-series was required in the design of the �lter. Usually, the sensors used to measure �ow
depths in open-channel are reasonably accurate to a fraction of a centimeter; therefore, the
variance of the measurement error is usually very small [7]. The variances of the disturbances
(Qesti) must be estimated from historical records on water withdrawals from the canal outlets.
The variances of the disturbances were: w1 = 12 m2=sm, w1 = 1:32 m2=sm, w1 = 0:72 m2=sm,
w1 = 1:42 m2=sm and w1 = 1:32 m2=sm. A value of 0.0005 was used for the variance of the
measurement matrix (RC), and it was an identity matrix. Using the given initial values, the
system response was simulated for 250 time increments or 7500 s. After designing the LQG
controller with Kalman �lter, the algorithm designed fuzzy estimator based on de�ned fuzzy
rules. To obtain an estimation, an appropriate initial gain matrix, L(0), was chosen. In this
study, since it was independent of the initial guess of P(0), the steady-state Kalman gain,
L(0), was adopted by using the following equations:

�P + P�T − PHTR−1HP = 	Qesti	T (40)

L(0) = PHTR−1 (41)

Once L(0) was computed, the algorithm calculated the dynamic and measurement equations
using Equations (14) and (24). Then, time-update equation, �x̂LF(k=k − 1), was determined
by using Equation (33). Optimal fuzzy estimator determines L(k) such that the Lyapunov
di�erence is guaranteed to be negative, i.e. �V (k)=V (k)−V (k − 1)¡0. Once update equa-
tions are computed, the algorithm calculates the Lyapunov function V (k) using Equation (35).
Using Equations (36), (37) and de�ned fuzzy rules, the variation amount (�Lij) of the previ-
ous fuzzy gain matrix Lij was determined. Later on, the fuzzy gain matrix, L, was computed
by using Equation (35). Then, the algorithm calculated the updated estimate state �x̂LF(k=k)
using Equation (34). This process was repeated along the simulation until �nding guaranteed
negative Lyapunov di�erence.
The analysis was started by evaluating the system stability. All the eigenvalues of the

feedback matrix were positive and had values less than one. The system was also found
to be both controllable and observable. In the derivation of the control matrix elements,
�, it was assumed that both the upstream and downstream gates of each reach could be
manipulated to control the system dynamics. The last pool’s downstream-end gate position
was frozen at the original steady-state value, and only the upstream gates of the given pool
were controlled to maintain the system at the equilibrium condition. The e�ect of variations
in the opening of the downstream gate must be taken into account through real-time feedback
of the actual depths immediately upstream and downstream of the downstream gate (node
N). Figure 4 demonstrates the incremental gate openings for each design technique (optimal
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Figure 4. Incremental gate openings for optimal state feedback, Kalman �lter and fuzzy �lter.
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Figure 5. Cumulative gate openings.

state feedback, Kalman �lter and fuzzy �lter) and for each gate in the canal. The deviation in
the gate openings for fuzzy �lter was compared with the deviation in gate opening computed
using optimal state feedback as well as steady-state Kalman �lter. At the beginning, gate 1 had
sharp peaks for all three design techniques. Since optimal state feedback has the best stability
properties, the state feedback curves will be target loop. At gate 1, incremental gate openings
for fuzzy �lter were closer to optimal state feedback (target-loop function) than were those
for the Kalman estimator. After 6000 s, gate 1 reached an equilibrium position for all three
techniques. At gate 2, gate 3, gate 4, gate 5 and gate 6, the incremental gate openings for
the Kalman �lter were far away from the optimal state feedback in comparison to the fuzzy
�lter values. At the end of the simulation, the variations in the gate openings (for all gates)
approached a constant value, indicating that a new equilibrium condition was established.
Figure 5 demonstrates the cumulative gate openings of the irrigation canal. It was observed
that gate 1, gate 2, and gate 6 had the highest changes in the gate openings. Also the �nal
openings for gate 1 and gate 2 reached the highest values among the other gates (Figure 6).
Since the variation in the gate openings were not a good indicator of the performance of
a control algorithm [1], the variations in the �ow depths at the downstream end of all the
pools were computed. Figure 7 demonstrates the variations in �ow depths for each pool. The
variations in �ow depths for the fuzzy �lter were compared with the variations in �ow depths
computed using the optimal state feedback as well as the steady-state Kalman �lter. Since
pool 1 was the �rst pool of the irrigation canal, with an increase in �ow rate into the lateral
(turnout) or downstream demand, the depth of �ow at the downstream end of pool 1 decreased
rapidly and approached a maximum deviation of −0:17m for the fuzzy �lter, −0:165m for
the optimal state feedback and −0:15m for the Kalman �lter at approximately 2000 s from
the beginning of the disturbance period. By the end of the simulation, the system returned
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Figure 6. Final gate openings.

very close to the original equilibrium condition for all three techniques. In pool 2, �rst 1700 s
of the simulation, the �ow depth decreased dramatically and reached a maximum deviation
of −0:145m for the optimal state feedback, −0:143m for the fuzzy �lter and −0:125m for
the Kalman �lter. The variations in �ow depth in pool 3 reached −0:155m for the fuzzy
�lter and −0:15m for the optimal state feedback and −0:142m for the Kalman �lter around
1500 s of the simulation period. Pool 4 and pool 5 had less �uctuation in comparison to the
other pools. Pool 6 had the highest variations in the �ow depths and the �ow depth at the
downstream end decreased rapidly and approached a maximum deviation of −0:325m for
the optimal state feedback, −0:3m for the fuzzy �lter and −0:275m for the Kalman �lter at
around 2000 s of the simulation period. The rapid decreases in the downstream depth of �ow
in each pool resulted in an attendant sudden increase in the gate openings at the upstream
end of the each reach to release more water into the pool. However, because of the wave
travel time, the depth of �ow at the downstream end did not start to rise until around 1700 s.
All the pools considered, the maximum deviation in depth of �ow occurred at the �rst and
last pools of the canal for all three design techniques. To meet the downstream target depth,
the last pool had the highest �uctuations. The �uctuations in the �rst pool were because of
releasing more water into the downstream pools and meeting the demand at the downstream
end. It is obvious that the variations in �ow depth for the fuzzy estimator are closer to the
target-loop function (optimal state feedback) than were those for the Kalman estimator. In
other words, Lyapunov-type fuzzy �lter had better stability properties than Kalman �lter in
the control of irrigation canal. The demonstrated fuzzy �lter not only guarantees the stability
for the estimation but also leads to a precise estimation. Moreover, the fuzzy �lter gain matrix
can be easily computed by using the fuzzy rules.
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Figure 7. Variations in �ow depths for optimal state feedback, Kalman �lter and fuzzy �lter.
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CONCLUSIONS

A fuzzy state estimator has been implemented in the control of multi-pool irrigation canals
to estimate the state variables (�ow depth and �ow rate) at intermediate nodes based on the
measured variables. The derivation of the fuzzy inference was based on Lyapunov function.
The performance of the fuzzy estimator was compared with the performance of the optimal
state feedback and Kalman �lter in terms of variations in the depths of �ow and the upstream
gate openings. Since the optimal state feedback (assuming all state variables are measured) has
the best robustness and stability properties, it is chosen as a target-loop function in this study.
The results obtained from simulations indicate that the fuzzy estimator provides both good
stability and performance in the control of irrigation canals. The advantages of fuzzy state
estimator are its simplicity, e�ectiveness and stability. Overall, the performance of the fuzzy
estimator technique for constant-level control was found to be better than the performance of
the Kalman �lter.
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